03-110 Installation and centering of intermediate flange

Data

Radial runout of intermediate flange		max. 0.10	
Fightening torques		Nm	(kpm)
Fastening bolts for intermediate flange		50	(5)
Waisted bolt for driven plate and flywheel	Initial torque	40	(4)
	Final torquing angle	90-100°	

Special tool

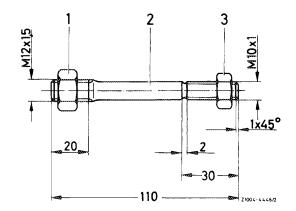
Dial gauge holder (2 required)

121 589 00 21 00

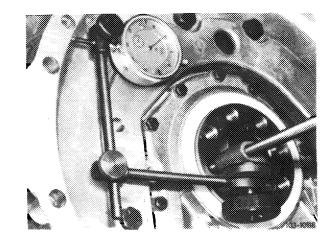
Socket 27 mm, 1/2" drive to crank engine

001 589 65 09 00

Shop-made tool


Threaded stud	see illustration, job no. 3

Note


Any intermediate flange that is replaced will also have to be centered.

Installation and centering

- 1 Place intermediate flange on dowel pins in crankcase.
- 2 Moderately tighten flur fastening bolts.
- 3 Screw threaded stud (shop-made) into crankshaft and secure with hexagon nut.

- 4 Attach dial gauge holder and dial gauge to threaded stud.
- 5 Position sensing pin against outside diameter of round centering section.

View illustrating engine 116

6 Using tool combination, turn crankshaft and measure radial runout. This must not exceed 0.10 mm.

Note: While turning crankshaft make sure that dial gauge does not stick.

7 Correct radial runout by gently tapping intermediate flange.

R 100/6498

8 Tighten fastening bolts.

 $\begin{tabular}{ll} \textbf{Note:} & Remove intermediate flange if radial runout exceeds 0.10 mm. \end{tabular}$

- 9 Bore both body-fit holes in intermediate flange to 12.1 mm.
- 10 Repeat operations 1-7.